skip to main content


Search for: All records

Creators/Authors contains: "Khan, Md."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Developing protein confinement platforms is an attractive research area that not only promotes protein delivery but also can result in artificial environment mimicking of the cellular one, impacting both the controlled release of proteins and the fundamental protein biophysics. Polymeric nanoparticles (PNPs) are attractive platforms to confine proteins due to their superior biocompatibility, low cytotoxicity, and controllable release under external stimuli. However, loading proteins into PNPs can be challenging due to the potential protein structural perturbation upon contacting the interior of PNPs. In this work, we developed a novel approach to encapsulate proteins in PNPs with the assistance of the zeolitic imidazolate framework (ZIF). Here, ZIF offers an additional protection layer to the target protein by forming the protein@ZIF composite via aqueous-phase cocrystallization. We demonstrated our platform using a model protein, lysozyme, and a widely studied PNP composed of poly(ethylene glycol)-poly(lactic-co-glycolic acid) (PEG–PLGA). A comprehensive study via standard loading and release tests as well as various spectroscopic techniques was carried out on lysozyme loaded onto PEG–PLGA with and without ZIF protection. As compared with the direct protein encapsulation, an additional layer with ZIF prior to loading offered enhanced loading capacity, reduced leaching, especially in the initial stage, led to slower release kinetics, and reduced secondary structural perturbation. Meanwhile, the function, cytotoxicity, and cellular uptake of proteins encapsulated within the ZIF-bound systems are decent. Our results demonstrated the use of ZIF in assisting in protein encapsulation in PNPs and established the basis for developing more sophisticated protein encapsulation platforms using a combination of materials of diverse molecular architectures and disciplines. As such, we anticipate that the protein-encapsulated ZIF systems will serve as future polymer protein confinement and delivery platforms for both fundamental biophysics and biochemistry research and biomedical applications where protein delivery is needed to support therapeutics and/or nutrients. 
    more » « less
    Free, publicly-accessible full text available March 15, 2025
  3. Abstract

    The longwave infrared (LWIR) range, which spans from 6 µm to 14 µm, is appealing for sensing due to strong molecular fingerprints in this range. However, the limited availability of low-loss materials that can provide higher-index waveguiding and lower-index cladding in the LWIR range presents challenges for integrated photonics. In this work, we introduce a low-loss germanium-on-zinc selenide (GOZ) platform that could serve as a versatile platform for nanophotonics in the LWIR. By bonding high-quality thin-film germanium (Ge) to a zinc selenide (ZnSe) substrate, we demonstrate transparency from 2 µm to 14 µm and optical losses of just 1 cm−1at 7.8 µm. Our results demonstrate that hybrid photonic platforms could be invaluable for overcoming the losses of epitaxially grown materials and could enable a wide range of future quantum and nonlinear photonics.

     
    more » « less
    Free, publicly-accessible full text available January 8, 2025
  4. Quantum cascade lasers (QCLs) have emerged as promising candidates for generating chip-scale frequency combs in mid-infrared and terahertz wavelengths. In this work, we demonstrate frequency comb formation in ring terahertz QCLs using the injection of light from a distributed feedback (DFB) laser. The DFB design frequency is chosen to match the modes of the ring cavity (near 3.3 THz), and light from the DFB is injected into the ring QCL via a bus waveguide. By controlling the power and frequency of the optical injection, we show that combs can be selectively formed and controlled in the ring cavity. Numerical modeling suggests that this comb is primarily frequency-modulated in character, with the injection serving to trigger comb formation. We also show that the ring can be used as a filter to control the output of the DFB QCL, potentially being of interest in terahertz photonic integrated circuits. Our work demonstrates that waveguide couplers are a compelling approach for injecting and extracting radiation from ring terahertz combs and offer exciting possibilities for the generation of new comb states in terahertz, such as frequency-modulated waves, solitons, and more.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  5. This work presents a comprehensive numerical study for designing a lead-free, all-inorganic, and high-performance solar cell based on Cs2TiI6 halide perovskite with all-inorganic carrier transport layers. A rigorous ab initio density-functional theory (DFT) calculation is performed to identify the electronic and optical properties of Cs2TiI6 and, upon extraction of the existing experimental data of the material, the cell is designed and optimized to the degree of practical feasibility. Consequently, a theoretical power conversion efficiency (PCE) of 21.17% is reported with inorganic TiO2 and CuI as carrier transport layers. The calculated absorption coefficient of Cs2TiI6 reveals its enormous potential as an alternative low-bandgap material for different solar cell applications. Furthermore, the role of different point defects and the corresponding defect densities on cell performance are investigated. It is found that the possible point defects in Cs2TiI6 can form both the shallow and deep defect states, with deep defect states having a prominent effect on cell performance. For both defect states, the cell performance deteriorates significantly as the defect density increases, which signifies the importance of high-quality material processing for the success of Cs2TiI6-based perovskite solar cell technology. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  6. Free, publicly-accessible full text available May 8, 2024
  7. Kaolinite nanoscrolls (NScs) are halloysite-like nanotubular structures of great interest due to their ability to superimpose halloysite’s properties and applicability. Especially attractive is the ability of these NScs to serve as reaction vessels for the uptake and conversion of different chemical species. The synthesis of kaolinite NScs, however, is demanding due to the various processing steps that lead to extended reaction times. Generally, three intercalation stages are involved in the synthesis, where the second step of methylation dominates others in terms of duration. The present research shows that introducing microwave processing throughout the various steps can simplify the procedure overall and reduce the synthesis period to less than a day (14 h). The kaolinite nanoscrolls were obtained using two final intercalating agents, aminopropyl trimethoxy silane (APTMS) and cetyltrimethylammonium chloride (CTAC). Both produce abundant NScs, as corroborated by microscopy measurements as well as the surface area of the final products; APTMS intercalated NScs were 63.34 m2/g, and CTAC intercalated NScs were 73.14 m2/g. The nanoscrolls averaged about 1 μm in length with outer diameters of APTMS and CTAC intercalated samples of 37.3 ± 8.8 nm and 24.9 ± 6.1 nm, respectively. The availability of methods for the rapid production of kaolinite nanoscrolls will lead to greater utility of these materials in technologically significant applications. 
    more » « less
  8. Activity Recognition (AR) models perform well with a large number of available training instances. However, in the presence of sensor heterogeneity, sensing biasness and variability of human behaviors and activities and unseen activity classes pose key challenges to adopting and scaling these pre-trained activity recognition models in the new environment. These challenging unseen activities recognition problems are addressed by applying transfer learning techniques that leverage a limited number of annotated samples and utilize the inherent structural patterns among activities within and across the source and target domains. This work proposes a novel AR framework that uses the pre-trained deep autoencoder model and generates features from source and target activity samples. Furthermore, this AR frame-work establishes correlations among activities between the source and target domain by exploiting intra- and inter-class knowledge transfer to mitigate the number of labeled samples and recognize unseen activities in the target domain. We validated the efficacy and effectiveness of our AR framework with three real-world data traces (Daily and Sports, Opportunistic, and Wisdm) that contain 41 users and 26 activities in total. Our AR framework achieves performance gains ≈ 5-6% with 111, 18, and 70 activity samples (20 % annotated samples) for Das, Opp, and Wisdm datasets. In addition, our proposed AR framework requires 56, 8, and 35 fewer activity samples (10% fewer annotated examples) for Das, Opp, and Wisdm, respectively, compared to the state-of-the-art Untran model. 
    more » « less
  9. There is increasing interest in α-polytype Ga2O3 for power device applications, but there are few published reports on dielectrics for this material. Finding a dielectric with large band offsets for both valence and conduction bands is especially challenging given its large bandgap of 5.1 eV. One option is HfSiO4 deposited by atomic layer deposition (ALD), which provides conformal, low damage deposition and has a bandgap of 7 eV. The valence band offset of the HfSiO4/Ga2O3 heterointerface was measured using x-ray photoelectron spectroscopy. The single-crystal α-Ga2O3 was grown by halide vapor phase epitaxy on sapphire substrates. The valence band offset was 0.82 ± 0.20 eV (staggered gap, type-II alignment) for ALD HfSiO4 on α-Ga0.2O3. The corresponding conduction band offset was −2.72 ± 0.45 eV, providing no barrier to electrons moving into Ga2O3.

     
    more » « less